категории

Размер шрифта

+
0
-

Ширина колонки

+
0
-
настройки
На главную
Наше расширение для Chrome Мы Вконтакте Наш Твиттер Мы в Google+ Мы на Одноклассниках Мы на Facebook
Автор: Евгений; Дата публикации: 09.01.2015; Категория: искажение истории; Теги темы: Тесла, эфир;

Технология беспроводной передачи энергии Тесла.

Технология беспроводной передачи энергии Тесла.

Около 100 лет назад, еще в первой четверти прошлого столетия, великий физик-экспериментатор Никола Тесла провел серию успешных экспериментов, по его мнению, однозначно подтверждавших возможность резонансной передачи электроэнергии посредством волновых процессов в земном шаре. На эту тему существует обширнейшее кол-во публикаций, дневников, и патентов Теслы. Однако, насколько Тесла был плодотворен в части публичных эффектных экспериментов – настолько же он был скуп в части формальных математических теорий, объяснявших эти эксперименты. В результате, даже его современники плохо представляли, что именно, и как – делает Тесла. А по прошествии столетия, разобраться в этом оказалось еще сложнее. Тем не менее, проведя тщательный анализ всей доступной информации по Тесле, оказалось возможным прийти к пониманию ключевых факторов, на которых основывал Тесла свои эксперименты по беспроводной передаче электроэнергии. И что особенно важно, это понимание полностью согласуется с общепринятой классической физикой — что позволяет говорить о возможности проведения полномасштабного эксперимента, повторяющего его работы.

Технология беспроводной передачи энергии Тесла.

В 1893 году на всемирной выставке в Чикаго продемонстрировал проект освещения при помощи люминесцентных ламп, не прибегая к помощи проводников электрической энергии. Через год тот же Тесла зажег в руках лампу накаливания. В том же году бенгальский ученый Джагадиш Чадра Боше при помощи электромагнитных волн на расстоянии смог ударить в колокол и зажечь порох... И это было только начало! Уже в 1899 году Николо Тесла пишет о передаче электроэнергии на расстояние при помощи возбуждения заряда земли и воздуха. Еще в конце XIX века он строит специальную башню для опытов в этой области. Причем его планы были куда более грандиозными! Он планировал построить целую мировую сеть таких башен, которые будут питать всю мировую инфраструктуру. Только представьте себе такое, что ещё в 19-м веке он мог всё это воплотить в жизнь! Как? Я решил в данной статье немного сломать свои стереотипы и не писать об этом статью самостоятельно. Т.к. нашёл очень хорошую статью. Но она немного объёмная и очень много технических нюансов, которые не всем придутся по вкусу. В связи с чем расположил её под спойлером. Так что если Вам интересны технические особенности- можете развернуть его и посмотреть. Если нет- дружно пропускаем))

Несколько лет назад мы изрядно покопавшись в патентах, дневниках и лекциях Н.Теслы (благо, образование позволяло) пришли к выводу, что пресловутая Башня Тесла по передаче энергии не фейк, а вполне рабочая конструкция.

В результате нескольких лет исследований, размышлений, изучения первоисточников, сопоставления данных, формирования и отсеивания гипотез и т.п. – появилась красивая и, по сути, простая модель, которая строго вписалась в классическую физику и была подтверждена численным моделированием в пакете Ansoft HFSS. С момента начала проекта, мы провели некоторое количество дискуссий в различных сообществах, где от нас требовали «статью для технарей» — в результате появился данный материал.

Этот материал не является строгой теорией (т.е. теорией, учитывающей все возможные аспекты работы Башни Теслы). Тем не менее, мы постарались достаточно полно осветить предлагаемую концепцию и привести адекватные численные оценки основных характеристик процесса. Так что, если Вам интересно разобраться в модели и поучаствовать в конструктивной дискуссии – приглашаем ознакомиться с материалами.

Итак, в нашей науч-поп статье изложено начало концепции – по сути, отправная точка исследований (на формулирование которой, к слову, потребовалось изрядное кол-во времени).

Можно в нескольких предложениях описать суть поста ниже, с пометкой «внимание — не для специалистов». Тогда суть можно было бы сформулировать так: Башня создает резонанс токов–напряжений в длинной линии, где в качестве длинной линии (проводника, одним концом подсоединенного к задающему генератору – т.е. к Башне) берется вся Земля. Сопротивление Земли оказывается крошечным (почему — разобрано ниже). Потери от ЭМ излучения также не носят драматических последствий, т.к. “спасает” ионосфера, от которой отлично отражается низкочастотное ЭМ–излучение, а отразившись – взаимодействует с Землей, снова переходя в токи в длинной линии – Земле (модель волновода). И возникает устойчивая картина стоячих волн токов–напряжений–зарядов в земле, сопровождаемая слабым ЭМ–излучением между землей и ионосферой.

Начали мы с того, что досконально изучили режим работы Башни Тесла следуя его записям и патентам. А из этого уже родилось понимание – какие физ-процессы может вызывать такое устройство в планете Земля, и из этого понимания – возникла уверенность, что передача энергии предложенным (и апробированным) Теслой путем вполне возможна. При этом, мы отталкиваемся от того, что в патенте Теслы присутствует вся полнота описания и нет «скрытых/спрятанных» параметров/процессов. Так что “идеи”, активно муссируемые желтой прессой и СМИ – о том, что Тесла с помощью своей Башни пытался “качать энергию эфира”, использовать “радиантную энергию” и т.п. – полагаем являются лишь фантазиями журналистов, далеких от физики. По нашему мнению, работа Башни полностью укладывается в известные физические законы, не требует привлечения каких бы то ни было новых концепций или физических эффектов, и в этом смысле наша работа (и будущий планируемый эксперимент) носит сугубо прикладной характер – а не характер фундаментальных исследований. Если материал ниже сложен для понимания, то можно ознакомиться со статьей по ссылке выше (она написана для гуманитариев, и содержит ряд неточностей, граничащих с некорректностью, но дает хорошее качественное понимание). За сим, приступим...

Башня Тесла: характеристики работы

Технология беспроводной передачи энергии Тесла.

Если отсечь все невозможное, то Башня Тесла (за вычетом не существенных здесь технических нюансов) есть не что иное, как заземленный одним концом спиральный четвертьволновой резонатор (характеризующийся распределенными параметрами), с дополнительной ёмкостью на верхнем конце спирали. Этот резонатор раскачивается задающим генератором (синусоидальный сигнал, частота ниже 20 кГц — если исходить из патентов Тесла, US787412 и US1119732).

Иначе говоря, принципиальная схема башни выглядит следующим образом:

Технология беспроводной передачи энергии Тесла.

Слева показана физическая уединенная ёмкость на вершине башни (дополнительная к собственной ёмкости катушки), справа – условная эквивалентная схема, где отдельно подчеркнуто, что ёмкость – уединенная, т.е. формально – ёмкость между Башней и бесконечностью, а не между Башней и Землей (т.к. в противном случае получим банальный LC-контур, замкнутый через землю). Для того чтобы минимизировать паразитную ёмкость между башней и землей — т.е. замыкание LC-контура Башни через землю — очевидно, необходимо поднять уединенную ёмкость от грунта (простая оценка показывает, что достаточно поднять ёмкость на высоту, равную нескольким средним диаметрам такой ёмкости — при выполнении такого условия, ёмкость между Башней и Землей уменьшится до значения сопоставимого с собственной уединенной ёмкости Башни).

Как известно из классической электротехники, в режиме резонанса такого резонатора ёмкостное и индуктивное сопротивления взаимно компенсируют друг друга, так что генератор “видит” только активное сопротивление резонатора. В спирали возникает стоячая волна – с узлом напряжения в точке генератора, и пучностью тока там же (при этом на конце резонатора наоборот – пучность напряжения и узел тока). Подробную аналитическую теорию работы такого резонатора можно посмотреть например вот здесь. Если материал по этой ссылке сложен для понимания – то можно упростить без потери сущности: спиральный резонатор такого рода это не что иное как просто четвертьволновая длинная линия, свернутая в спираль – т.е. как и в “вытянутой” длиной линии, в таком резонаторе на резонансной частоте будет существовать стоячая волна токов-напряжений, с узлом напряжения на одном конце линии, и узлом тока – на противоположном конце линии; существенное отличие от “вытянутой” длинной линии – только в усиленной индуктивной и ёмкостной связи между соседними участками такой линии в силу их геометрической близости в спиральной конфигурации, что немного (не в разы) — меняет резонансную частоту и скорость распространения волны вдоль линии.

Технология беспроводной передачи энергии Тесла. На рисунке — стоячие волны в длинной линии. Распределение волн: а – напряжения; б – тока в однопроводниковой линии в различные моменты времени.

Иначе говоря, Башня является буфером заряда – уединенной ёмкостью, в которую задающий силовой генератор “гоняет” заряд из земли.

При этом, ЭМ-излучение в смысле радиоволн (т.е. поле в дальней, волновой зоне Башни) для нашего диапазона рабочих параметров – фактически отсутствует. Покажем это.

В радиофизике есть понятие спиральных антенн, которое, на первый взгляд, можно соотнести с таким спиральным резонатором. Однако, в отличие от антенн, электрическая длина витка Башни на 3-5 порядков меньше длины волны (т.е. кол-во витков исчисляется тысячами – при том, что вся длина обмотки примерно равна четверти длины волны). При этом, бОльшая часть токов (пучность тока) сосредоточена в нижней половине башни. Иначе говоря, в смысле внешнего ЭМ-излучения, такая структура работает как обычная классическая сосредоточенная индуктивность. Т.е. обычный магнитный диполь.

Известна формула, задающее сопротивление излучения электрически короткой магнитной рамки (магнитного диполя) с длиной волны λ (сопротивление излучения характеризует потери проводника на излучение ЭМ-волн — т.е. потери энергии тока на излучение рассматриваются как формальное активное сопротивление, потери на котором равны потерям на излучения):

 

Технология беспроводной передачи энергии Тесла.


Где эквивалентная длина диполя lэ связана с радиусом «а» рамки соотношением:

Технология беспроводной передачи энергии Тесла.


Для случая N витков формула домножается на коэффициент N2 (из очевидных соображений – плотность энергии излучения пропорциональна квадрату амплитуды поля рамки, т.е. квадрату кол-ва витков в рамке). Итого,

Технология беспроводной передачи энергии Тесла.


Подставляя наши параметры (частота 10 кГц, т.е. длина волны 30 000 м, радиус катушки – пусть 2 метра, длина обмотки – 10 км, кол-во витков около 800) получаем сопротивление излучения равное 390 наноом. Что пренебрежимо мало по сравнению с потерями на активном сопротивлении системы (составляющем, как минимум, единицы Ом).

Но, помимо тангенциальной составляющей тока в таком резонаторе, есть и осевая компонента (результирующий вертикальный ток) благодаря которой Башня дает, в том числе, излучение обычного короткого электрического диполя, для которого сопротивление излучения связано с длиной диполя l и длиной волны λ как:

Технология беспроводной передачи энергии Тесла.


Таким образом, сопротивление излучения (относительно тока, идущего через генератор) для вертикальной компоненты тока и для наших параметров (высоте башни в десятки метров – пусть будет 30 метров для конкретики, и частоты в 10 кГц) можно оценить примерно в 1 миллиОма.

В итоге видим, что оба вида излучения (и от тангенциальной, и от осевой составляющих тока) пренебрежимо малы относительно потерь на активном сопротивлении контура, при том что это оценки сверху (т.к. для них величина тока полагается одинаковой на всём протяжении обмотки катушки, в то время как на самом деле ток падает по синусу – и на “горячем конце” катушки имеется узел тока – т.е. ноль тока, и реальное излучение будет в разы меньше оценок выше). Так что любые идеи о том, что Башня работает как антенна – не имеют под собой абсолютно никаких оснований (во всяком случае, до тех пор, пока мы следуем патентам Теслы, а не занимаемся фантазированием). Башня не является антенной в классическом понимании – её радиоизлучение (те. ЭМ-поле в дальней, волновой зоне) пренебрежимо мало, и всё что она позволяет делать – это быть эффективным накопителем для заряда, который генератор заводит-выводит из почвы на частоте работы генератора. Так что “гениальные” возражения вида “у вас обычная спиральная антенна – КПД передачи энергии будет ниже плинтуса”, и прочие “аргументы” исходящие из радиоизлучения такой структуры – лишь демонстрируют полное непонимание оппонентом самых базовых концепций радиофизики.

С Башней разобрались, теперь идем к Земле

Для простоты, начнем с элементарных аналогий – от которых постепенно перейдем к итоговой концепции.

Пусть у нас есть электрически-длинный проводник с разрывом на одном конце, заземленный вторым концом через источник переменного напряжения (электрически длинный — означает, что длина проводника сопоставима/больше длины волны от генератора, исходя из частоты генератора и скорости распространения волны — близкой к скорости света в вакууме):

Технология беспроводной передачи энергии Тесла.


В такой длинной линии, в случае если потери в линии малы – возникает стоячая волны токов-напряжений (т.е. суперпозиция падающих волн от генератора и волн, отраженных от свободного конца длинной линии). Характерным примером таких линий и таких волн являются обычные электрические вибраторы (то бишь классические антенны), как показано на рисунке ниже.

Технология беспроводной передачи энергии Тесла.
Распределение тока в симметричных вибраторах различной длины.


Суть стоячих волн в длинной линии достаточно простая для понимания. Можно мысленно разбить весь проводник на отрезки в половину длины волны. Каждый такой отрезок является ёмкостью (т.к. у проводника есть распределенная вдоль него ёмкость) и индуктивностью (аналогично). Соответственно стоячие волны это не что иное как волны токов, заряжающих такие ёмкости — т.е. энергия в такой стоячей волне попеременно запасается то в виде заряда, распределенного вдоль проводника (по синусу) — и в этот момент токи равны нулю, то в виде токов распределенных вдоль проводника (так же по синусу) — и в этот момент поверхностная плотность зарядов вдоль проводника равна нулю. Что по сути повторяет режим работы обычной LC-цепи (катушка индуктивности последовательно соединенная с ёмкостью-конденсатором), но только с учетом распределенного характера ёмкости и индуктивности. Токи в полуволне «стекаются» к центру такого выделенного отрезка — создавая пучность напряжения (т.е. появление поверхностного заряда на проводнике), а в соседнем отрезке «растекаются» от аналогичного центра — создавая заряд противоположного знака, далее этот процесс повторяется (в противоположную сторону — создавая противоположные по знаку заряды на поверхности проводника). Разумеется вышесказанное относится к идеальной линии (без потерь) разомкнутой на конце, в реальной линии с потерями (и/или линии с нагрузкой на конце) процессы несколько сложнее — но принципиальная суть от этого не меняется.

Если переходить к элементарным механическим аналогиям, то наиболее близким процессом будут волны сжатия-растяжения в длинной пружине, возникающие в том случае когда такую пружину (лежащую на опоре с нулевым трением) начинают качать туда-сюда вдоль оси пружины на одном из концов пружины — при закрепленном втором конце. При этом току — соответствует скорость движения соответствующего участка пружины, а напряжению — соответствует степень сжатия пружины. Т.е. в какой-то момент времени все участки пружины будут иметь нулевую скорость — а степень растяжения пружины будет меняться по синусу вдоль ней (эдакие чередующиеся сгустки и разряжения) — чему соответствует нулевой ток в стоячей волне и одновременно максимум напряжения (т.е. максимум поверхностной плотности заряда на проводнике), а в другой момент времени — через четверть периода колебания — наоборот вся пружина будет не деформированной, но мгновенная скорость её участков будет изменяться по синусу вдоль оси пружины (чему соответствует момент нулевой плотности заряда вдоль проводника длинной линии — но максимуму тока в нем).

Потери для такой ситуации в целом можно разделить на 2 составляющих: омические потери, и потери на излучение.
В случае большой длины проводника, и его малом омическом сопротивлении, основной вклад в потери будет давать излучение (т.е. сопротивление излучения).

Как известно, если окружить такую линию заземленным проводящим экраном, то потери на излучение будут нивелированы, и такая структура носит название коаксиального волновода – причем, в нашем примере, волна в таком коаксиальном волноводе будет существовать в виде ТЕМ-моды (портом возбуждения при этом, по сути, является генератор, подключенный через землю — к внутреннему и внешнему проводникам волновода).

Технология беспроводной передачи энергии Тесла.


По сути, режим ТЕМ-моды можно трактовать, как режим индуктивной связи внутреннего и внешнего проводников волновода через поле ближней зоны токов на этих проводниках (изменение тока на внутренней жиле — вызывает соответственно ЭДС на внешнем экране, причем наведенный на внешнем экране ток направлен против изменения тока на внутренней жиле — т.е. по сути обычная индукция в ближнем поле тока), так что поперечные потоки энергии не просто нулевые в среднем по времени (как для ТЕ или ТМ мод), но нулевые в любой момент времени. Не происходит переотражений от границ волновода – поток энергии носит только продольный характер (т.е. направлен вдоль оси, и соответственно вектор Пойнтинга направлен так же строго параллельно направлению распространения волны – вдоль оси такого коаксиального резонатора).

Поэтому режим ТЕМ-моды в коаксиальном волноводе характеризуется хорошими параметрами (относительно режимов ТЕ или ТМ мод) в части передачи энергии и в части малости коэффициента затухания волны в волноводе, и при необходимости передачи энергии по коаксиальному волноводу – как правило, стремятся использовать именно режим ТЕМ-моды.

Однако, даже если мы удалим заземление внешнего экрана такого волновода, по всей длине экрана кроме его концевых участков – экран будет отлично выполнять свою функцию.

Технология беспроводной передачи энергии Тесла.


Ведь такой экран в любом случае есть длинная линия, в качествен генератора для которой выступает ЭДС от переменного тока на внутреннем проводнике-жиле. И только на краях экрана – в силу очень малой ёмкости таких краев, будет существовать некоторая пучность напряжения, а на всей остальной длине такого экрана – он будет нормально функционировать. Что подтверждается элементарным моделированием в HFSS.

Далее, что будет, если мы не просто уберем заземление внешнего экрана – но “замкнем” края как показано на рисунке ниже (так что внешний экран станет этакой “капсулой”)? Ответ вполне ясен – эта ситуация не будет отличаться от рассмотренной выше. Экран будет работать по всей длине, а на таких вот окончаниях внешней “капсулы” – будут пучности напряжений (и узлы тока соответственно).

Технология беспроводной передачи энергии Тесла.


Далее, если внутренний и внешний проводники сделать уже в виде сфер – то мы придем к общей модели предполагаемого эксперимента (пропорции на рисунке, разумеется, не соблюдены):

Технология беспроводной передачи энергии Тесла.


Как не трудно догадаться, внутренняя проводящая сфера – это Земля, внешняя проводящая сфера – это верхние слои атмосферы (в основном ионосфера). А общая геометрия такого резонатора – это обычный концентрический сферический резонатор (в котором говорить про ТЕМ моду, в строгом смысле – уже нельзя, т.к. в нем существуют только ТЕ и ТМ моды), только с немного необычным способом возбуждения ТМ-моды (т.е. порт возбуждения – не связывает между собой внешнюю и внутреннюю обкладки, как это делается в «классической» электротехнике).

Хотя, в силу переменного сечения внутреннего и внешнего проводников, амплитуды стоячих волн токов и напряжений будут уменьшаться по мере удаления от генератора, общая суть при этом остается той же самой – ТЕМ мода коаксиального (или же ТМ-мода сферического) резонатора, возбуждаемая соответствующим источником (Башней Тесла).

На первый взгляд, идея странная: известно, что проводимость грунта Земли, и ионосферы (в ясный день на освещенной стороне) около 0.001 См/м (плюс-минус порядок), в то время как проводимость например меди – около 58 000 000 См/м. Однако, давайте посмотрим на этот вопрос исходя из численных оценок, а не из интуитивных соображений. И для начала разберемся с сопротивлением грунта Земли. Общая мысль состоит в том, что с точки зрения процессов протекания тока, деление на диэлектрики, полупроводники и проводники – достаточно условно по своей сути, т.к. при достаточно большом сечении диэлектрика – он становится вполне хорошим проводником (т.е. обладает малым итоговым сопротивлением).
Как известно, при достаточной толщине проводника, ток имеет существенное значение только на некоторой глубине, называемой глубиной скин-слоя, которая рассчитывается по формуле:

Технология беспроводной передачи энергии Тесла.


Где —Технология беспроводной передачи энергии Тесла. удельное сопротивление, Технология беспроводной передачи энергии Тесла. — относительная магнитная проницаемость, Технология беспроводной передачи энергии Тесла.— частота.

Разумеется, это упрощенная формула, применимая для проводника, а не диэлектрика – однако на наших сверхнизких частотах потери связанные с диэлектрической проницаемостью грунта — малы, так что в качестве оценки – такая формула вполне применима.

Для диапазона частот 1-10 кГц, и диапазона проводимостей 0.001-0.00001 См/м глубина скин-слоя лежит в диапазоне от сотни метров до нескольких километров. При этом, чем ниже будет частота – тем больше толщина скин-слоя, т.е. тем меньше омические потери в планетарном резонансе (обратно пропорционально корню из частоты).

Таким образом, мы приходим к выводу, что, рассматривая чисто активное сопротивление Земли (как шара из грунта, т.е. материала имеющего проводимость на уровне 0.01-0.0001 См/м), и подразумевая диапазон частот не ниже 1 кГц (т.к. еще меньшие частоты не реализуемы с практической точки зрения — исходя из требуемых технических параметров Башни Тесла) необходимо ограничиться километровым слоем. Отметим, что Тесла, видимо, не вполне отдавал себе в этом отчет – и искренне полагал, что токи от его установки идут вглубь земли (а не бегут по поверхности оной), как это указано в нашей научно-популярной статье. Согласно современным данным по электродинамике – этого, разумеется, не может быть.

Сопротивление между двумя стержнями, погруженными в плохо проводящую среду (например в грунт) задается формулой:

Технология беспроводной передачи энергии Тесла.


Где

Технология беспроводной передачи энергии Тесла.


Здесь L – длина стержней, D – расстояние между ними, r1 – радиус сечения стержней, — удельная проводимостью среды.

Интересно отметить, что исходя из этой формулы, начиная с расстояния между стержнями много большего длины стержней – сопротивление между стержнями фактически становится константой (перестает расти по мере роста расстояния).

Так, например, для двух стержней длиной 30м, диаметром 0.2 м, и проводимости грунта около 0.04 См/м (что корректно для верхних слоев почвы) характерное сопротивление (между ними) лежит в диапазоне 1-3 Ом – начиная с расстояния в метры, и далее (без ограничения дальности расстояния) остается таковым при любом увеличении расстояния между стержнями. Так что идея о том, что Земля – плохой проводник (как объект в целом) – это, разумеется, интуитивное заблуждение, и будь так – заземление просто не имело бы смысла.

Так же особенностью данной формулы является тот факт, что начиная с некоторой длины стержней – дальнейший рост длины стержня не приводит к заметному уменьшению сопротивления между стержнями (т.е. иначе говоря, итоговое сопротивление между приёмником и передатчиком – слабо зависит от глубины скин-слоя). Что в целом является известным фактов в части заземляющих систем

Технология беспроводной передачи энергии Тесла.


Таким образом, у нас есть все основания для оптимизма по части сопротивления всей поверхности Земли.
 

Сделаем теперь более строгие оценки

 


Постоянная затухания, характеризующая потери на стенках волновода в силу активного сопротивления, для ТЕМ-моды коаксиального волновода

 

Технология беспроводной передачи энергии Тесла.


(к которому близка большая, центральная часть Земли-резонатора как показано на рисунке выше) задается формулой.

Технология беспроводной передачи энергии Тесла.


где Rs1 и Rs2 — поверхностные сопротивления металла внутреннего и внешнего цилиндров волновода, которые можно определить по формуле:

Технология беспроводной передачи энергии Тесла.


Здесь мю – это абсолютная магнитная проницаемость (для подавляющей части поверхностного грунта – это соответственно просто магнитная постоянная).
Сразу отметим, что под корнем стоит отношение частоты и проводимости – т.е. меньшая по сравнению с металлами проводимость во многом компенсируется килогерцевым диапазоном частот (в то время как коаксиальные волноводы применяют для частот в гигагерцы), а то что отношение стоит под знаком корня – еще больше “улучшает” ситуацию. Итого, для наших параметров (f=3 кГц, и σ=0.01 См/м получаем величину в 1.06 Ом) характерная величина поверхностного сопротивления (и земли и ионосферы) порядка одного Ома, плюс-минус порядок.

Один Ом – это, казалось бы, всё еще достаточно большая величина. Однако, добротность объемного резонатора пропорциональна его линейным размерам (т.к. кол-во энергии в резонаторе пропорционально объему оного, а потери – пропорциональны площади стенок резонатора). Что находит отражение в формуле в числителе. Радиусы D и d в нашем случае имеют колоссальное значение (D=6 600 000 м, d = 6 400 000 м,), что с лихвой перекрывает относительно большую величину поверхностной проводимости стенок волновода, так что постоянная затухании для наших параметров может быть оценена по формулам выше как 10-8-10-9 1/м.

В реальности, бОльшая часть поверхности планеты покрыта хорошим электролитом (соленая океаническая вода) – т.е. данная оценка это оценка сверху.

Постоянная затухания равная 10-9 означает, что за всю длину пути «x» волны до противоположной точки Земного Шара (примерно 20 000 км) амплитуда волны упадет на величину =2%.

Чему соответствует крайне высокая добротность резонатора Земля-Ионосфера (на порядки выше, чем сотня) для такой моды, в отличие от механизма распространения обычных радиоволн через переотражение от границ земли-ионосферы. И даже ухудшение оценочной проводимости на 1-3 порядка (что имеет смысл для ионосферы) не приводит к фатальным последствиям в части самой возможности существования такого резонанса.

Мы убедились, что в принципе, искомый резонанс (исходя из фактических параметров резонатора) может иметь место, хотя реальная добротность такого резонанса может иметь вилку примерно в 2-3 порядка (но даже при самом худшем сочетании параметров – не должна быть ниже сотни).

Аналогичные оценки возможной высокой добротности ТМ-мод в резонаторе Земля-ионосфера даны в работе М.В. Давидовича – “моды многослойного концентрического сферического резонатора”.

Если говорить про строгий подход, то разумеется необходимо рассматривать полноценный концентрический резонатор в режиме ТМ-мод (например, неплохой обзор по этому вопросу можно найти по этой ссылке, для интересующихся более глубокими теоретическими аспектами — можно порекомендовать вот эту и вот эту работы).

Первые гармоники нулевой ТМ-моды – соответствуют явлению т.н. резонанса Шумана. Однако, если говорить про частоты в районе нескольких килогерц, то помимо нулевой моды – так же будут возбуждаться и следующие за ней моды (для 10 кГц – это номера мод в диапазоне 0-6).

Действительно, из формулы

Технология беспроводной передачи энергии Тесла.


для первой моды – низшая гармоника будет иметь частоту около 1.5 кГц, для второй моды – 3 кГц, и т.п.

При этом, как следует из формулы задающей частоты гармоник для каждой из таких мод, начиная с первой моды и далее – “плотность” расположения гармоник по частотной оси крайне велика (если для нулевой моды гармоники идут с шагом порядка 10 Гц, то для остальных мод попадающих в диапазон ниже 10 кГц – с шагом порядка 0.01-0.1 Гц). Так что, осуществляя возбуждение ТМ-мод такого резонатора на частотах в диапазоне нескольких килогерц, по сути невозможно говорить о какой-то конкретной моде/гармонике: итоговая картина стоячих волн будет соответствовать чрезвычайно большому количеству гармоник, сразу для нескольких мод. Что принципиально отличает такой резонанс от резонанса Шумана.

Есть и другое принцип


Уважаемые читатели, не забывайте, что на сайте действует система уведомления об ошибках и опечатках. Если Вы нашли в тексте ошибку или опечатку- просто выделите слово мышкой и нажмите ctrl + enter. Спасибо за понимание. Все мы люди, все мы ошибаемся! :)
Поделитесь с друзьями в социальных сетях?
Буду благодарен! :)


Главная страница Наш блог Факты сайта
Коровы могут спасти человечество от ВИЧКоровы могут спасти от ВИЧО пользе нетерпения в отношенияхДва проявления - повышенная терпеливость и "взрывоопасность" - работают. Ученые представили первый телефон без батареиВ США изобрели первый мобильный телефон без аккумулятораИстория изобретения аквалангаКто и когда изобрёл акваланг?Почему интеллект — не главноеВ чем сила, брат: как мыслят гении, или почему интеллект — не главное? Аномия: усталое поколение Что такое аномия? Французский социолог Эмиль Дюркгейм заинтересовался этмим вопросом. Электромобили НАМИ-750 и НАМИ-751 Электромобили ЛАЗ-750 и ЛАЗ-751Пуля остановилась в сантиметре от сонной артерииРедкий случай: пуля остановилась в сантиметре от сонной артерии мужчиныКратер Дарваза, Туркмения«Ворота в ад», ТуркменияЛЭТ аккумуляторный мусоровозЛЭТ аккумуляторный мусоровоз СССР
Котик! :)